RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Authors
Abstract:
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the ranking system is considered as the agent of the learning system and the selection of documents is displayed to the user as the agent's action. Reinforcement signal in this system is calculated based on user's click on the documents. Action-values in the RRLUFF algorithm are calculated for each feature of the document-query pair. In RRLUFF method, each feature is scored based on the number of the documents related to the query and their position in the ranked list of that feature. For learning, documents are sorted according to modified scores for the next query. Then, according to the position of a document in the ranking list, some documents are selected based on the random distribution of their scores to display to the user. OHSUMED and DOTIR benchmark datasets are used to evaluate the proposed method. The evaluation results indicate that the proposed method is more effective than the related methods in terms of P@n, NDCG@n, MAP, and NWN.
similar resources
Web pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
full textweb pages ranking algorithm based on reinforcement learning and user feedback
the main challenge of a search engine is ranking web documents to provide the best response to a user`s query. despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. in this paper, a ranking algorithm based on the reinforcement le...
full textPersonalized Web-Document Filtering Using Reinforcement Learning
Document filtering is increasingly deployed in Web environments to reduce information overload of users. We formulate online information filtering as a reinforcement learning problem, i.e. TD(0). The goal is to learn user profiles that best represent his information needs and thus maximize the expected value of user relevance feedback. A method is then presented that acquires reinforcement sign...
full textLearning SVM Ranking Function from User Feedback Using Document Metadata and Active Learning in the Biomedical Domain
Information overload is a well-known problem facing biomedical professionals. MEDLINE, the biomedical bibliographic database, adds hundreds of articles daily to the millions already in its collection. This overload is exacerbated by the lack of relevance-based ranking for search results, as well as disparate levels of search skill and domain experience of professionals using systems designed to...
full textDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
full textDocument ranking using web evidence
Evidence based on web graph structure is reportedly used by the current generation of World-Wide Web (WWW) search engines to identify “high-quality”, “important” pages and to reject “spam” content. However, despite the apparent wide use of this evidence its application in web-based document retrieval is controversial. Confusion exists as to how to incorporate web evidence in document ranking, a...
full textMy Resources
Journal title
volume 7 issue 3
pages 421- 442
publication date 2019-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023